Kuvan merkinnät ja merkinnät Computer Visionille

Ultimate Buyers Guide 2022

Jaa LinkedIn
Jaa Twitterissä
Jaa facebookissa

Tietokonenäkö on valtava aihe, eikä teknisten asiantuntijoiden ja yrittäjien yrittäjä voi tietää niistä kokonaan lyhyessä ajassa. Varsinkin kun he kehittävät tietokonenäyttöön perustuvaa tuotetta ja niillä on rajoitettu aika markkinoida, he tarvitsevat jotain laajaa ja merkittävää tietääkseen tietokoneen näön ja kuvan merkintöjen perusteet, jotta heillä olisi toiminnallista tietoa ja tehdä tietoon perustuvia päätöksiä.

Tämä opas valitsee käsitteet ja esittelee ne yksinkertaisimmilla mahdollisilla tavoilla, jotta saat selkeän käsityksen siitä, mistä on kyse. Se auttaa sinua saamaan selkeän näkemyksen siitä, miten voit kehittää tuotettasi, sen takana olevia prosesseja, asiaan liittyviä teknisiä ominaisuuksia ja paljon muuta. Joten tämä opas on erittäin kekseliäs, jos olet:

Kuvan merkintä

Kuvan merkintä
Lue Image Annotation Buyers Guide -opas tai Lataa PDF -versio

esittely

Oletko käyttänyt Google Lensia äskettäin? No, jos et ole, ymmärrät, että tulevaisuus, jota olemme kaikki odottaneet, on vihdoin täällä, kun aloitat sen hullujen ominaisuuksien tutkimisen. Yksinkertainen, Android-ekosysteemin lisäominaisuus, Google Lensin kehitys osoittaa, kuinka pitkälle olemme saavuttaneet teknologisen kehityksen ja evoluution.

Siitä lähtien, kun vain tuijotimme laitteitamme ja kokimme vain yksisuuntaisen viestinnän - ihmisistä koneisiin, olemme nyt raivanneet tietä epälineaariselle vuorovaikutukselle, jossa laitteet voivat tuijottaa meitä takaisin, analysoida ja käsitellä mitä he näkevät reaaliaika.

Kuvan merkintä

He kutsuvat sitä tietokonenäyksi, ja kyse on siitä, mitä laite voi ymmärtää ja ymmärtää reaalimaailman elementtejä siitä, mitä se näkee kameransa kautta. Palataksemme Google Lensin mahtavuuteen, sen avulla voit löytää tietoja satunnaisista esineistä ja tuotteista. Jos osoitat laitteen kameran hiirelle tai näppäimistölle, Google Lens kertoo laitteen merkin, mallin ja valmistajan.

Lisäksi voit osoittaa sen rakennukseen tai sijaintiin ja saada siitä tietoja reaaliajassa. Voisit skannata matemaattisen ongelmasi ja löytää siihen ratkaisuja, muuntaa käsinkirjoitetut muistiinpanot tekstiksi, seurata paketteja yksinkertaisesti skannaamalla ne ja tehdä enemmän kamerallasi ilman mitään käyttöliittymää.

Tietokonenäkö ei pääty tähän. Olisit nähnyt sen Facebookissa, kun yrität ladata kuvan profiiliisi ja Facebook tunnistaa ja merkitsee sinut automaattisesti sekä ystäviesi että perheen kasvot. Tietokonenäkö nostaa ihmisten elämäntapaa, yksinkertaistaa monimutkaisia ​​tehtäviä ja helpottaa ihmisten elämää.

Mutta miksi me sanomme kaiken tämän?

Se on yksinkertaista. Tällä hetkellä oleminen ei ole ollut niin yksinkertaista. Jos Google Lens pystyy heti havaitsemaan kuvan ja vetämään kaiken Internetissä olevasta aiheesta, se on kestänyt vuosien kehitystä ja koulutusta. Tietokonenäön menestys johtuu täysin siitä, mitä kutsumme kuvan merkinnöiksi - perustavanlaatuiseksi prosessiksi tekniikalle, joka saa tietokoneet ja laitteet tekemään älykkäitä ja ihanteellisia päätöksiä.

Tietokonenäköä ja siihen liittyviä etuja ei voi olla ilman kuvan merkintöjä, ja juuri siitä aiomme keskustella ja tutkia tässä laajassa oppaassa. Tutkimme kaikkia näkökohtia kuvan merkintöjen perusteista aina siihen, miten löydät oikeat toimittajat. Tämä auttaa sinua kehittämään paremman tuotteen ja lopulta laajentamaan koneoppimisen ja syvällisen oppimisen moduulien tietämystäsi.

Kuvan merkintä

Mikä on kuvan merkintä

Ollaan rehellisiä. Tietokoneet ovat perus- ja melko tyhmä. Heille on annettava lusikalla annetut ohjeet tehtävien suorittamisesta. Vasta äskettäin edistysaskeleet ovat antaneet koneille mahdollisuuden kehittää kykyä ajatella itsenäisesti tekoälyn, koneoppimisen ja syvällisen oppimisen avulla ja keksiä parhaat keinot ongelman ratkaisemiseksi.

Kun kouluttamaton laite katsoo palmujen kuvaa, se ei tiedä mikä se on. Sen tieto on melkein samanlainen kuin lapsella, joka ei ole oppinut, mikä puu on. Koneille on opetettava, mikä puu on ja minkä tyyppisiä puita maailmassa on.

Kuvan merkinnät ovat tietojen merkintöjen osajoukko, joka tunnetaan myös nimikuvien merkinnöistä, transkriptioista tai merkinnöistä, joissa taustalla on ihmisiä ja jotka väsymättä merkitsevät kuvia metatiedoilla ja määritteillä, jotka auttavat koneita tunnistamaan kohteet paremmin. Kun otetaan huomioon sama esimerkki puista, koneoppimisen asiantuntijat omistavat suuren osan ajastaan ​​merkitsemällä kuvia puista ja määrittelemällä, mitä palmu on ja miltä se näyttää. Tämä mahdollistaa laitteen tunnistaa palmuja tarkasti.

Prosessi ei kuitenkaan ole vielä valmis. Saattaa näyttää siltä, ​​että koneet ovat nyt hallinneet palmujen havaitsemisprosessin, mutta vasta kun näytät heille pajun kuvan, huomaat, että kone ei ole vielä valmis. Asiantuntijoiden on siis liitettävä kuviin huomautuksia koneille, mitkä palmut eivät ole "samoja". Vuosien jatkuvan koulutuksen avulla koneet oppivat tunnistamaan ja tunnistamaan kohteita saumattomasti niiden kapean tilan, tarkoituksen ja tietojoukkojen mukaan.

Kuvan merkintä tietokonenäköä varten 

Kuvan merkintäKuvamerkinnät ovat osajoukko merkintöjä, jotka tunnetaan myös nimikuvien koodaamisella, transkriptiolla tai merkinnällä, että kuvamerkinnässä on mukana taustalla olevia ihmisiä, merkitsemällä kuvat väsymättä metatietotiedoilla ja attribuuteilla, jotka auttavat koneita tunnistamaan objektit paremmin.

Kuvatiedot

  • 2-D-kuvat
  • 3-D-kuvat

Merkintätyypit

  • Kuvien luokittelu
  • Objektin tunnistus
  • Kuvan segmentointi
  • Objektien seuranta
  • Kuvan transkriptio

Merkintätekniikat

  • Rajakotelo
  • Moniviiva
  • Monikulmio
  • Maamerkkihuomautus

Millaisia ​​kuvia voidaan merkitä?

  • Kuvat ja monikehykset eli videot voidaan merkitä koneoppimista varten. Yleisimmät tyypit ovat:
    • 2-D- ja monikuvakuvat (video), ts. Tiedot kameroista tai järjestelmäkameroista tai optisesta mikroskoopista jne.
    • 3-D- ja monikuvakuvat (video), ts. Tiedot kameroista tai elektroni-, ioni- tai skannausanturimikroskoopeista jne.

Mitä yksityiskohtia lisätään kuvaan merkinnän aikana?

Asiantuntijat merkitsevät kaikki tiedot, joiden avulla koneet saavat paremman käsityksen siitä, mitä kuva sisältää. Tämä on erittäin työvoimavaltainen tehtävä, joka vaatii lukemattomia tunteja manuaalista työtä.

Yksityiskohtien osalta se riippuu projektin eritelmistä ja vaatimuksista. Jos projekti edellyttää, että lopputuote luokittelee vain kuvan, lisätään asianmukaiset tiedot. Esimerkiksi, jos tietokonenäkötuotteellasi on kyse siitä, että kerrot käyttäjillesi, että mitä he skannaavat, on puu ja erottaa se köynnöksestä tai pensasta, merkityt yksityiskohdat ovat vain puuta.

Kuitenkin, jos projektivaatimukset ovat monimutkaiset ja vaativat enemmän oivalluksia jaettavaksi käyttäjien kanssa, merkintöihin sisältyisi sellaisten yksityiskohtien sisällyttäminen kuin puun nimi, sen kasvitieteellinen nimi, maaperän ja sään vaatimukset, ihanteellinen kasvulämpötila ja paljon muuta.

Näiden tietojen avulla koneet analysoivat ja käsittelevät syötettä ja toimittavat tarkat tulokset loppukäyttäjille.

Kuvan merkintä

Kuvan merkintätyypit 

Kuva sisältää yleensä useita elementtejä. Voit keskittyä tiettyyn kohteeseen tai esineeseen, mutta kuvassasi on silti muita elementtejä. Joskus näitä objekteja tarvitaan analysointiin, ja toisinaan ne on poistettava, jotta ennakkoluulot tai tietojen vääristymät jäävät syrjään. Tapahtumasta riippumatta koneiden on tunnettava kaikki kuvan elementit, jotta he voivat tehdä omat päätöksensä. Kuvan merkintöihin sisältyy myös muiden objektien tunnistaminen. Vaikka tämä eroaa projektikohtaisesti, on hyvä, että sinulla on käsitys erilaisista kuvan merkintätoiminnoista.

Saadaksemme visuaalisen kuvan siitä, miten se tehdään, käytetään seuraavaa kuvaa viitteenä. Jos huomaat, kuva näyttää yksinkertaiselta ja selkeältä, mutta kiinnitä huomiota siihen sisältyvien eri elementtien määrään. Sinulla on autoja, rakennuksia, suojatie, liikennevaloja ja paljon muuta. Jos tarkennat sitä edelleen, siellä on takseja ja yksityisiä ajoneuvoja, rakennuksia ja pilvenpiirtäjiä, kylttejä ja paljon muuta. Kuvan merkinnässä on kyse yksityiskohtien käsittelystä.

Kuvan merkintätyypit

Kuvien luokittelu

Kuvien luokittelu

Alkeellisin tyyppi, jossa objektit luokitellaan laajasti. Joten tässä prosessissa tunnistetaan vain elementit, kuten ajoneuvot, rakennukset ja liikennevalot.

Objektin tunnistus

Objektin tunnistus

Hieman tarkempi toiminto, jossa eri objektit tunnistetaan ja merkitään. Ajoneuvot voivat olla autoja ja takseja, rakennuksia ja pilvenpiirtäjiä sekä kaistoja 1, 2 tai enemmän.

Kuvan segmentointi

Kuvan segmentointi

Tämä menee jokaisen kuvan erityispiirteisiin. Siihen lisätään tietoja kohteesta, esim. Väri, sijainti, ulkonäkö jne., Jotta koneet erottuvat toisistaan. Esimerkiksi keskellä oleva ajoneuvo olisi keltainen taksi kaistalla 2.

Objektien seuranta

Objektien seuranta

Tähän sisältyy kohteen yksityiskohtien, kuten sijainnin ja muiden määritteiden, tunnistaminen useissa kehyksissä samassa tietojoukossa. Videoiden ja valvontakameroiden materiaalia voidaan seurata esineiden liikkeitä ja kuvioiden tutkimista varten.

Kuvan huomautustekniikat

Kuvamerkinnät tehdään eri tekniikoilla ja prosesseilla. Kuvan merkintöjen aloittamiseksi tarvitaan ohjelmistosovellus, joka tarjoaa erityisominaisuudet ja toiminnot, sekä työkalut, joita tarvitaan kuvien merkitsemiseen projektivaatimusten perusteella.

Aloittamattomille on olemassa useita kaupallisesti saatavia kuvan merkintätyökaluja, joiden avulla voit muokata niitä omaan käyttötapaukseesi. On myös työkaluja, jotka ovat avointa lähdekoodia. Jos vaatimuksesi ovat kuitenkin kapeat ja koet kaupallisten työkalujen tarjoamat moduulit olevan liian yksinkertaisia, voit hankkia projektillesi kehitetyn mukautetun kuvan merkintätyökalun. Tämä on tietysti kalliimpaa ja aikaa vievää.

Riippumatta luomastasi tai tilaamastasi työkalusta, on olemassa tiettyjä kuvan merkintätekniikoita, jotka ovat universaaleja. Katsotaanpa mitä ne ovat.

Rajauslaatikot

Rajauslaatikot

Alkeellisimmassa kuvamerkintätekniikassa asiantuntijat tai merkitsijät piirtävät ruudun kohteen ympärille kohdekohtaisten yksityiskohtien määrittämiseksi. Tämä tekniikka sopii parhaiten merkitsemään symmetrisen muotoisia esineitä.

Toinen muunnos rajoittavista laatikoista on suorakulmaisia. Nämä ovat 3D-muunnoksia rajoittavista laatikoista, jotka ovat yleensä kaksiulotteisia. Cuboidit seuraavat objekteja ulottuvuuksiensa suhteen tarkempien tietojen saamiseksi. Jos tarkastelet yllä olevaa kuvaa, ajoneuvot voidaan helposti merkitä rajoittavien laatikoiden kautta.

Paremman kuvan saamiseksi 2D-laatikot antavat sinulle tietoa kohteen pituudesta ja leveydestä. Cuboid-tekniikka antaa sinulle yksityiskohtia myös kohteen syvyydestä. Kuvien merkitsemisestä suorakulmioilla tulee enemmän veroa, kun esine on vain osittain näkyvissä. Tällöin merkinnät arvioivat kohteen reunat ja kulmat olemassa olevan kuvan ja tiedon perusteella.

Maamerkki

Maamerkki

Tätä tekniikkaa käytetään tuomaan esiin kuvan tai kuvamateriaalin esineiden liikkeiden monimutkaisuus. Niitä voidaan käyttää myös pienten esineiden havaitsemiseen ja merkitsemiseen. Maamerkkejä käytetään erityisesti kasvot merkittyihin kasvojen piirteisiin, eleisiin, ilmeisiin, asentoihin ja muuhun. Se sisältää kasvojen piirteiden ja niiden ominaisuuksien yksilöimisen yksilöllisesti tarkan tuloksen saamiseksi.

Voit antaa sinulle todellisen esimerkin siitä, missä maamerkki on hyödyllinen, ajattelemalla Instagram- tai Snapchat-suodattimiasi, jotka asettavat hatut, suojalasit tai muut hauskat elementit kasvojesi ja ilmeesi perusteella. Joten, kun seuraavan kerran valitset koirasuodattimen, ymmärrä, että sovellus on merkinnyt kasvojesi ominaisuudet tarkkojen tulosten saavuttamiseksi.

polygoneja

polygoneja

Kuvien esineet eivät ole aina symmetrisiä tai säännöllisiä. On paljon tapauksia, joissa huomaat niiden olevan epäsäännöllisiä tai vain satunnaisia. Tällaisissa tapauksissa merkintäjät käyttävät polygonitekniikkaa merkitsemään epäsäännölliset muodot ja objektit tarkasti. Tähän tekniikkaan kuuluu pisteiden sijoittaminen kohteen mitoille ja viivojen piirtäminen manuaalisesti kohteen ympärysmitalle tai kehälle.

Linjat

Linjat

Perusmuotojen ja monikulmioiden lisäksi yksinkertaisia ​​viivoja käytetään myös kuvien kohteiden merkitsemiseen. Tämän tekniikan avulla koneet voivat tunnistaa rajat saumattomasti. Esimerkiksi itsenäisten ajoneuvojen koneiden ajokaistojen yli piirretään viivat, jotta ne ymmärtäisivät paremmin rajat, joilla heidän on ohjattava. Linjoja käytetään myös näiden koneiden ja järjestelmien kouluttamiseen erilaisiin tilanteisiin ja olosuhteisiin ja auttamaan heitä tekemään parempia ajopäätöksiä.

Käytä koteloita kuvan merkinnöissä

Tässä osassa kerrotaan, kuinka kuvan merkintöjä tai kuvamerkintöjä voidaan käyttää ML-mallien kouluttamiseen suorittamaan tiettyjä tehtäviä omien toimialojensa perusteella.

Jälleenmyynti: Ostoskeskuksessa tai ruokakaupassa 2-D-rajauslaatikkotekniikkaa voidaan käyttää myymälän tuotteiden, kuten paitojen, housujen, takkien, henkilöiden jne., Kuvien merkitsemiseen, jotta ML-malleja voidaan kouluttaa tehokkaasti eri ominaisuuksilla, kuten hinnalla, värillä, suunnittelu jne

Terveydenhuolto: Monikulmio tekniikkaa voidaan käyttää merkitsemään/merkitsemään ihmisen elimiä lääketieteellisissä röntgensäteissä ML-mallien kouluttamiseksi tunnistamaan epämuodostumat ihmisen röntgensäteissä. Tämä on yksi kriittisimmistä käyttötapauksista, joka mullistaa terveydenhuollon teollisuutta tunnistamalla sairauksia, vähentämällä kustannuksia ja parantamalla potilaiden kokemusta.

Terveydenhuolto

Itse ajavat autot: Olemme jo nähneet autonomisen ajon onnistumisen, mutta meillä on vielä pitkä tie kuljettavana. Monet autonvalmistajat eivät ole vielä ottaneet käyttöön mainittua tekniikkaa, joka perustuu semanttiseen segmentointiin, joka merkitsee kuvan jokaisen pikselin tien, autojen, liikennevalojen, pylväiden, jalankulkijoiden jne. Tunnistamiseksi, jotta ajoneuvot voivat olla tietoisia ympäristöstään ja aistia esteitä heidän tiellään.

Tunteiden tunnistus: Maamerkintöjä käytetään havaitsemaan ihmisen tunteet/tunteet (iloiset, surulliset tai neutraalit) mittaamaan kohteen emotionaalista mielentilaa tietyllä sisällöllä. Tunteiden tunnistus tai tunteiden analyysi voidaan käyttää tuotearvosteluihin, palveluarvosteluihin, elokuva -arvosteluihin, sähköpostivalituksiin/palautteisiin, asiakaspuheluihin ja kokouksiin jne.

Tunteiden tunnistus

Toimitusketju: Linjoja ja uria käytetään varastojen kaistojen merkitsemiseen telineiden tunnistamiseksi niiden toimituspaikan perusteella, mikä puolestaan ​​auttaa robotteja optimoimaan reittinsä ja automatisoimaan toimitusketjun ja minimoimaan siten ihmisten puuttumisen ja virheet.

Miten lähestyt kuvamerkintöjä: sisäinen vs. ulkoistaminen?

Kuvamerkinnät vaativat investointeja paitsi rahan lisäksi myös aikaa ja vaivaa. Kuten mainitsimme, työvoimavaltainen vaatii huolellista suunnittelua ja huolellista osallistumista. Mikä kuva-annotatorien attribuutti on, mitä koneet käsittelevät ja tuottavat tuloksia. Joten kuvan merkintävaihe on erittäin tärkeä.

Nyt liiketoiminnan näkökulmasta sinulla on kaksi tapaa edetä kuviesi merkinnöissä - 

  • Voit tehdä sen talossa
  • Tai voit ulkoistaa prosessin

Molemmat ovat ainutlaatuisia ja tarjoavat oman kohtuullisen osuutensa eduista ja haitoista. Katsotaanpa niitä objektiivisesti. 

In-house 

Tässä nykyinen kyvykkyyssi tai tiimisi jäsenet huolehtivat kuvien merkitsemistehtävistä. Sisäinen tekniikka merkitsee, että sinulla on käytössä tiedonsiirtolähde, oikea työkalu tai tietojen merkintä alustalla ja oikealla tiimillä, jolla on riittävät taidot kommentointitehtävien suorittamiseen.

Tämä on täydellinen, jos olet yritys tai yritysketju, joka pystyy investoimaan omistettuihin resursseihin ja tiimeihin. Koska olet yritys tai markkinatoimija, sinulla ei myöskään ole niukasti tietoaineistoja, jotka ovat välttämättömiä koulutusprosessien aloittamiseksi.

Ulkoistaminen

Tämä on toinen tapa suorittaa kuvamerkintöjä, joissa annat työn joukkueelle, jolla on vaadittava kokemus ja asiantuntemus niiden suorittamiseen. Sinun tarvitsee vain jakaa vaatimukset heidän kanssaan ja määräaika, ja he varmistavat, että toimituksesi ovat ajallaan.

Ulkoistettu tiimi voi olla samassa kaupungissa tai naapurustossa kuin yrityksesi tai täysin eri maantieteellisessä paikassa. Ulkoistamisella on merkitystä käytännön altistumiselle työhön ja tietämykselle kuvien merkinnöistä.

Kuvan huomautus: Ulkoistaminen vs. sisäiset joukkueet-kaikki mitä sinun tarvitsee tietää

UlkoistaminenIn-house
Lisäkerros lausekkeita ja protokollia on otettava käyttöön, kun ulkoistetaan projekti toiselle tiimille tietojen eheyden ja luottamuksellisuuden varmistamiseksi.Säilytä saumattomasti tietojen luottamuksellisuus, kun sinulla on omia resursseja tietojoukkojen parissa.
Voit mukauttaa tapaa, jolla haluat kuvadatasi olevan.Voit räätälöidä tietojenkäsittelylähteesi tarpeidesi mukaan.
Sinun ei tarvitse käyttää ylimääräistä aikaa tietojen puhdistamiseen ja sitten aloittaa niiden merkitsemisen.Sinun on pyydettävä työntekijöitä käyttämään ylimääräisiä tunteja raakatietojen puhdistamiseen ennen niiden merkitsemistä.
Resursseissa ei ole ylikuormitusta, koska prosessi, vaatimukset ja suunnitelma on täysin piirretty ennen yhteistyötä.Päätät liikaa resurssejasi, koska tietojen merkinnät ovat lisävastuu heidän nykyisissä rooleissaan.
Määräaikoja noudatetaan aina ilman kompromisseja tietojen laadussa.Määräaikoja voidaan pidentää, jos sinulla on vähemmän tiimin jäseniä ja enemmän tehtäviä.
Ulkoistetut tiimit mukautuvat paremmin uusiin ohjemuutoksiin.Pienentää tiimin jäsenten moraalia joka kerta, kun käännät vaatimuksistasi ja ohjeistasi.
Sinun ei tarvitse ylläpitää tiedonkeruulähteitä. Lopputuote tavoittaa sinut ajoissa.Olet vastuussa tietojen tuottamisesta. Jos projektisi vaatii miljoonia kuvatietoja, sinun on hankittava asiaankuuluvat tietojoukot.
Työmäärän skaalattavuus tai ryhmäkoko ei ole koskaan huolenaihe.Skaalautuvuus on suuri huolenaihe, koska nopeita päätöksiä ei voida tehdä saumattomasti.

Bottom Line

Kuten voit selvästi nähdä, vaikka yrityksen sisäisen kuvan / data-huomautusryhmän näyttäminen näyttää mukavammalta, koko prosessin ulkoistaminen on kannattavaa pitkällä aikavälillä. Kun teet yhteistyötä omistautuneiden asiantuntijoiden kanssa, kuormitat itseäsi useilla tehtävillä ja vastuilla, joita sinun ei tarvitse kantaa. Tämän ymmärryksen avulla ymmärretään edelleen, kuinka voit löytää oikeat tietomerkintöjen toimittajat tai tiimit.

Tekijät, jotka on otettava huomioon valittaessa tietomerkintätoimittaja

Tämä on valtava vastuu, ja koneoppimismoduulin koko suorituskyky riippuu toimittajan toimittamien tietojoukkojen laadusta ja ajoituksesta. Siksi sinun tulisi kiinnittää enemmän huomiota siihen, kenelle puhut, mitä he lupaavat tarjota, ja harkita enemmän tekijöitä ennen sopimuksen allekirjoittamista.

Tässä on joitain tärkeitä tekijöitä, jotka kannattaa harkita aloittamisen helpottamiseksi.Tietomerkintätoimittaja

asiantuntemus

Yksi tärkeimmistä huomioon otettavista tekijöistä on sen myyjän tai tiimin asiantuntemus, jonka aiot palkata koneoppimisprojektiisi. Valitsemallasi tiimillä pitäisi olla eniten käytännön altistumista tietojen merkintä työkaluja, tekniikoita, verkkotunnuksen tuntemusta ja kokemusta työskentelystä useilla aloilla.

Teknisten ominaisuuksien lisäksi heidän tulisi myös toteuttaa työnkulun optimointimenetelmät sujuvan yhteistyön ja johdonmukaisen viestinnän varmistamiseksi. Jos haluat ymmärtää paremmin, kysy heiltä seuraavia asioita:

  • Aikaisemmat projektit, joissa he ovat työskennelleet, ovat samanlaisia ​​kuin sinun
  • Heillä on vuosien kokemus 
  • Työkalujen ja resurssien arsenaali, jota he käyttävät merkintöjä varten
  • Heidän tapansa varmistaa tietojen yhdenmukainen merkintä ja oikea-aikaiset toimitukset
  • Kuinka mukavia tai valmiita he ovat projektin skaalautuvuuden ja muun suhteen

Tietojen laatu

Datan laatu vaikuttaa suoraan projektin tuotokseen. Kaikki työsi, verkostoitumisen ja investoinnin vuodet riippuvat moduulin toiminnasta ennen käynnistämistä. Varmista siis, että toimittajat, joiden kanssa aiot työskennellä, toimittavat korkealaatuisia aineistoja projektiisi. Tässä on nopea huijausarkki, jotta voit saada paremman idean:

  • Kuinka myyjäsi mittaa tietojen laatua? Mitkä ovat vakiotiedot?
  • Yksityiskohdat niiden laadunvarmistusprotokollista ja valitusten korjausprosesseista
  • Kuinka he varmistavat tiedon siirtämisen tiimin jäseneltä toiselle?
  • Voivatko he ylläpitää tietojen laatua, jos volyymeja myöhemmin kasvatetaan?

Viestintä ja yhteistyö

Laadukkaan tuotoksen toimittaminen ei aina tarkoita sujuvaa yhteistyötä. Siihen sisältyy myös saumaton viestintä ja erinomainen ylläpito. Et voi työskennellä sellaisen tiimin kanssa, joka ei anna sinulle päivityksiä koko yhteistyön ajan tai pitää sinut poissa silmukasta ja toimittaa projektin yhtäkkiä määräajankohtana. 

Siksi tasapainosta tulee välttämätöntä, ja sinun on kiinnitettävä erityistä huomiota heidän toimintatapoihinsa ja yleiseen asenteeseen yhteistyöhön. Joten kysy heidän viestintämenetelmistään, sopeutuvuudestaan ​​ohjeisiin ja vaatimusten muutoksiin, projektivaatimusten pienentämiseen ja muuhun varmistaaksesi sujuvan matkan molemmille osapuolille. 

Sopimuksen ehdot

Näiden näkökohtien lisäksi on joitain näkökulmia ja tekijöitä, jotka ovat väistämättömiä laillisuuden ja säädösten kannalta. Tähän sisältyy hinnoitteluehdot, yhteistyön kesto, yhdistämisehdot ja -ehdot, työroolien määrittely ja määrittely, selkeästi määritellyt rajat ja paljon muuta. 

Lajittele ne ennen sopimuksen allekirjoittamista. Paremman kuvan saamiseksi tässä on luettelo tekijöistä:

  • Kysy heidän maksuehdoistaan ​​ja hinnoittelumallista - onko hinnoittelu tehtyä työtä tunnissa vai merkinnässä
  • Onko maksu kuukausittain, viikoittain vai kahden viikon välein?
  • Hinnoittelumallien vaikutus, kun projektin ohjeissa tai työn laajuudessa tapahtuu muutoksia

skaalautuvuus 

Yrityksesi kasvaa tulevaisuudessa ja projektisi laajuus laajenee eksponentiaalisesti. Tällaisissa tapauksissa sinun tulee olla varma, että myyjäsi pystyy toimittamaan yrityksesi vaatimien leimattujen kuvien määrän mittakaavassa.

Onko heillä tarpeeksi lahjakkuutta talossa? Kuluttavatko he kaikki tietolähteensä? Voivatko he muokata tietojasi yksilöllisten tarpeiden ja käyttötapausten perusteella? Tällaiset näkökohdat varmistavat, että myyjä voi siirtyä, kun tarvitaan suurempia tietomääriä.

Käärimistä

Kun olet tarkastellut näitä tekijöitä, voit olla varma, että yhteistyösi olisi saumatonta ja ilman esteitä, ja suosittelemme ulkoistamaan kuvamerkintätehtävät asiantuntijoille. Varo johtavia yrityksiä, kuten Shaip, jotka valitsevat kaikki oppaassa mainitut ruudut.

Olemme olleet tekoälytilassa vuosikymmenien ajan ja olemme nähneet tämän tekniikan kehityksen. Tiedämme, miten se alkoi, miten se menee ja sen tulevaisuuden. Joten emme vain seuraa viimeisimpiä edistysaskeleita, vaan valmistaudumme myös tulevaisuuteen.

Lisäksi valitsemme asiantuntijoita varmistaaksemme, että tiedot ja kuvat on merkitty projektiisi mahdollisimman tarkasti. Ei ole väliä kuinka kapea tai ainutlaatuinen projekti on, varmista aina, että saat meiltä moitteetonta tiedonlaatua.

Ota vain yhteyttä meihin ja keskustele vaatimuksistasi, niin aloitamme sen heti. Ota yhteyttä kanssamme tänään.

Puhutaan

  • Rekisteröitymällä olen samaa mieltä Shaipin kanssa Tietosuojalauseke että Käyttöehdot ja annan suostumukseni B2B-markkinointiviestinnän vastaanottamiseen Shaipilta.

Usein kysytyt kysymykset (FAQ)

Kuvan merkinnät ovat tietojen merkintöjen osajoukko, joka tunnetaan myös nimikuvien merkinnöistä, transkriptioista tai merkinnöistä, jotka sisältävät ihmisiä taustalla, ja väsymättä merkitsevät kuvia metatiedoilla ja määritteillä, jotka auttavat koneita tunnistamaan kohteet paremmin.

An kuvan merkintä-/tarratyökalu on ohjelmisto, jolla voidaan merkitä kuvat metatietotiedoilla ja määritteillä, jotka auttavat koneita tunnistamaan objektit paremmin.

Kuvien merkintä-/huomautuspalvelut ovat palveluita, joita tarjoavat kolmannen osapuolen toimittajat, jotka merkitsevät tai merkitsevät kuvan puolestasi. Ne tarjoavat tarvittavaa asiantuntemusta, laadukasta ketteryyttä ja skaalautuvuutta tarpeen mukaan.

Merkitty/merkitty kuva on sellainen, joka on merkitty metatiedoilla, jotka kuvaavat kuvaa ja tekevät siitä ymmärrettävän koneoppimisalgoritmien avulla.

Kuvan merkinnät koneoppimiseen tai syväoppimiseen on tarrojen tai kuvausten lisääminen tai kuvan luokittelu siten, että ne näyttävät tietopisteet, jotka haluat mallisi tunnistavan. Lyhyesti sanottuna se lisää asiaankuuluvia metatietoja, jotta ne voidaan tunnistaa koneilla.

Kuvan merkintä sisältää yhden tai useamman näistä tekniikoista: rajauslaatikot (2-d, 3-d), maamerkit, monikulmiot, moniviivat jne.